
Comparison of the Simulations from Chapter 7 with the State 
of Research on AI Safety and Emergence 
In the following, the simulations from Chapters 7.1 to 7.39 of the research 
documentation are each assigned to a category and compared with relevant scientific 
papers or reports. Three categories are used: 

●​ Covered: The approach has already been dealt with in specialist 
literature/technical reports. 

●​ Related: Similar approaches or related security concerns are documented, but 
not exactly identical. 

●​ Novel: The idea has hardly been documented to date and appears to be original. 

For each simulation, we name—if available—a suitable paper title with the main author 
and justify the classification with reference to the current state of research. 

7.1 - Base64 as a Trojan Horse 

Category Covered 

Relevant Publication OWASP Top 10 LLM Risks 2024-(OWASP GenAI 
Project) 

Justification The use of Base64-encoded text to bypass 
filters is known and documented in the security 
community. For example, the OWASP GenAI 
project explicitly mentions encoding malicious 
instructions in Base64 as a common technique 
to bypass the content filters of LLMs. Technical 
reports also describe Base64 encoding as a 
common obfuscation method for prompt 
injections and for data exfiltration. The 
simulation thus confirms an attack vector that 
is already technically proven. 

7.2 - OCR "Bugs": Image Texts Infiltrate AI Systems 

Category Covered 

Relevant Publication Invisible Injections: Exploiting Vision-Language 
Models... - Chetan Pathade (arXiv 2025) 

Justification The injection of manipulative text via images 
(OCR injection) has already been recognized as 



a vulnerability. A 2023 BlackHat talk by Ben 
Nassi demonstrated how hidden text 
instructions in images can be read and followed 
by multimodal LLMs. Current research confirms 
this danger: Pathade et al. (2025) present the 
first comprehensive studies on steganographic 
prompt injections in vision-language models, 
where malicious instructions are invisibly 
embedded in images and extracted by models 
such as GPT-4V. Thus, the attack shown in the 
simulation—text in the image as a "Trojan 
horse" for AIs—is already covered in the 
literature. 

7.3 - "Pixel Bombs": How Image Bytes Blow Up AI Systems 

Category Covered 

Relevant Publication One Pixel Attack for fooling DNNs - Jiawei Su 
(IEEE, 2019) 

Justification Minimal, barely visible changes to image data 
as an attack on AI are well researched. For 
example, Su et al. (2017) showed with the 
one-pixel attack that even a single, specifically 
placed pixel can completely mislead an image 
classification model. The simulation also 
describes LSB steganography (hidden 
messages in the least significant bits of 
pixels)—also a known approach to hiding 
invisible commands in images. Current works 
(Pathade 2025) confirm that such 
steganographically embedded prompts can be 
extracted and executed by vision AIs. The 
phenomenon that visible text in the image 
massively influences the AI's interpretation 
(so-called typographic attack) is also known 
from examples with CLIP models (a word 
written on an image can dominate recognition). 
Overall, the effects shown in "pixel 
bombs"—whether single pixels, hidden bit 
messages, or irritating image captions—are 
already covered by adversarial ML research. 



7.4 - The Silent Direct Connection: Byte-Based Audio Injection 

Category Related 

Relevant Publication Indirect Prompt Injection into LLMs using 
Images and Sounds - Ben Nassi (BlackHat EU 
2023) 

Justification Audio prompt injection is known as an attack 
vector, but mostly in physical form (e.g., 
ultrasound commands or hidden voice 
commands in music). The simulation describes 
an even more subtle variant: directly feeding 
manipulated audio files into the data stream 
without acoustic signals. Research by Nassi 
(2023) already shows that hidden prompts can 
also be smuggled into LLMs via audio inputs. In 
his talk, it was demonstrated that prepared 
audio samples, analogous to images, can 
deceive a multimodal model and change its 
behavior. Concrete academic literature on this 
is still thin, but related works such as Carlini et 
al. (2018) on Hidden Voice Commands generally 
prove that inaudible or inconspicuous audio 
inputs can manipulate language systems. The 
byte injection presented here (direct feeding of 
synthetic WAV data) is a more advanced 
concept based on known audio attacks—thus 
related to documented approaches, although 
novel in this data form and hardly published so 
far. 

7.5 - Ghost-Context Injection: Comment Becomes Command Center 

Category Covered 

Relevant Publication Not what you've signed up for... (Indirect 
Prompt Injection) - Kai Greshake (USENIX 2023) 

Justification The idea that code comments or "dead" 
context can serve as hidden commands for AIs 
has already been practically demonstrated. 
Greshake et al. (2023) showed that a code 
completer (GitHub Copilot) can be manipulated 



via prepared comments in imported files. The 
injection was placed in commented-out lines 
and still influenced the model's suggestions—a 
behavior that corresponds to the simulation. 
The authors emphasize that a prompt hidden in 
a comment is not detected by automatic tests 
and influences the AI despite the formal 
"inactivity" of the code. Thus, Ghost-Context 
Injection—attacks via non-executed, for 
humans irrelevant context (e.g., comments)—is 
clearly covered by current research. 

7.6 - Ethical Switch Hacking: When the Off-Switch Becomes an Invitation 

Category Related 

Relevant Publication Not what you've signed up for... - Kai Greshake 
(2023) 

Justification This simulation describes how AIs can still 
semantically evaluate hidden code (deactivated 
by macros) and thus be exploited. This is similar 
to the mechanics of 7.5: here too, 
non-executed code paths or comments 
become a trap. While this specific case (a 
red-team block with instructions deactivated 
via #define) has hardly been documented in 
papers so far, it corresponds to the principle of 
comment injection from Greshake's work. It was 
shown there that a comment in the code 
context can influence the AI, although it is 
ignored by the compiler. Ethical Switch Hacking 
via "dead code" is therefore closely related to 
known Ghost-Context attacks. The specialist 
literature has so far mainly dealt with general 
code comment injections; the use of 
conditional compilation blocks as an attack 
vector is an original special case, but is in 
principle covered by similar approaches. 

7.7 - Client Detour Exploits: When the Messenger Lies... 

Category Related 



Relevant Publication How Hidden Prompt Injections Can Hijack AI 
Code Assistants - Kasimir Schulz (HiddenLayer, 
2025) 

Justification This describes the vulnerability that not the 
model itself, but the upstream client/transport 
can be manipulated. This problem—attack 
before the AI filters, by compromising the input 
interface—is known in the security world 
(analogous principle: "If the client is 
compromised, server filters are of little help"). 
Specifically in the AI domain, there are related 
reports: For example, Schulz et al. (2025) 
demonstrated how a prepared README in a Git 
repository caused the AI code assistant Cursor 
to execute commands without being asked and 
to exfiltrate API keys by having the client 
forward the embedded instructions to the AI 
without checking. A recently disclosed exploit 
in Google's Gemini code tool also showed that 
"agentic" AI systems could be made to execute 
malicious code through manipulated inputs on 
the developer side. These scenarios 
underscore that attacks on the intermediate 
layer (app, plugin, UI) are real risks. The exact 
procedure described in 7.7 (DLL injection, 
memory patching of an AI client) is not yet 
listed as a separate term in the literature, but is 
conceptually related to known 
supply-chain/client-side attacks. 

7.8 - Invisible Ink Coding: When Comments Become Commands 

Category Covered 

Relevant Publication Not what you've signed up for... - Kai Greshake 
(2023) 

Justification Invisible or hidden instructions in the prompt 
context are a central topic of current security 
research. A well-known example was provided 
by Arvind Narayanan in 2023, when he placed 
hidden text (white font on a white background) 
on his website, which Bing's chatbot read and 
executed—although a human did not see it. 



Greshake et al. generally describe such indirect 
prompt injections and show how, for example, 
HTML comments or invisible texts in documents 
can be used to control LLMs. The scenario 
outlined in 7.8 (comments as "invisible ink" for 
commands) is covered by these works. The 
concrete metaphor of the "invisible message" 
merely underscores what is already known: AIs 
do not check the origin of text—even if it was 
only in comments or non-visible elements, they 
treat it as regular input. 

7.9 - Leet Semantics: 133t Language Infiltrates AI Filters 

Category Covered 

Relevant Publication Tricking LLMs into Disobedience - Xinyun Chen 
et al. (arXiv 2023) 

Justification The use of alternative spellings (Leetspeak, 
special characters) to bypass word filters is a 
known attack vector. Even simple content filters 
for chats could be bypassed by writing 
forbidden words, for example, as "133t". This is 
now also documented for LLM security: A blog 
by Lakera (2023) explicitly names Leetspeak or 
Base64 as common orthography-based 
jailbreak techniques to outsmart filters. Such 
changes preserve the meaning for the model, 
but bypass strict word filters. Research papers 
on jailbreaks categorize this as obfuscation. 
Simulation 7.9—the creation of double 
meanings through 133t language—confirms a 
long-covered mechanism: filters that are only 
trained on specific keywords often fail when 
attackers use creative written variations. 

7.10 - Pattern Hijacking: When Form Dictates Content 

Category Related 

Relevant Publication Universal and Transferable Adversarial Attacks 
on Aligned LLMs - Xinyang Zhang (arXiv 2023) 



Justification This is about certain patterns or formats in 
prompts hijacking the model's behavior, 
regardless of the actual content. This is 
reminiscent of current research on universal 
adversarial prompts—character or word 
sequences that consistently throw a model off 
course. Zhang et al. (2023), for example, found 
generic suffixes of seemingly random 
characters that cause various LLMs to ignore 
guidelines (alignment bypass). Other works 
(e.g., Zou et al. 2023) also show that 
context-free "patterns" can dominate model 
behavior. Pattern Hijacking in the simulation 
describes exactly this phenomenon: the 
structure/form of an input dominates the 
content-based evaluation. Although the term is 
new, the concept—that attackers can steer the 
AI via certain prompt formats or text 
structures—is proven by related jailbreak 
techniques (e.g., recurring sentence structures 
that trick filters). 

7.11 - Semantic Mirage 

Category Related 

Relevant Publication Tricking LLMs into Disobedience - Xinyun Chen 
et al. (2023) 

Justification The simulation describes how an AI 
"hallucinates" supposed commands in a jumble 
of meaningless characters. This scenario has 
only been marginally researched—but is in 
principle related to the hallucination and 
misunderstanding problems of LLMs. It is 
known that large models even try to generate 
meaningful outputs from random input 
(keyword: "garbage in - narrative out"). In Chen 
et al. (2023), it is formally investigated how 
easily LLMs can be induced to violate rules; 
among other things, it is discussed that even 
nonsensical or contradictory prompts can 
provoke unexpected outputs. Semantic Mirage 
as a targeted attack (absurd input to induce the 
AI to misinterpret) is novel, but fits into known 



problems: The model over-interprets content 
and can thus be led to false or unwanted 
actions. Corresponding cases are treated in the 
literature on hallucination and robustness, even 
if this specific "desert text" approach has 
hardly been documented so far—we therefore 
classify it as related. 

7.12 - Semantic Mimicry: The Art of the Invisible Message 

Category Related 

Relevant Publication Malicious Prompts: Baize Alignment Breakers - 
Zhuohan Li (2023) 

Justification In Semantic Mimicry, harmful instructions are 
packaged in inconspicuous language in such a 
way that they appear to be legitimate content 
and are "overlooked" by examiners. This idea 
reflects social engineering at the prompt level 
and is similar to known jailbreak tactics in which 
attackers build up harmless-looking roles or 
contexts in order to obtain forbidden outputs. 
Although there is no single paper exactly on 
this scenario, comparable examples appear in 
alignment forums and reports—for example, 
prompts that embed rules as a seemingly 
neutral description. Li et al. (2023) show a 
collection of Alignment Breakers, where 
malicious instructions were hidden in seemingly 
normal dialogues in order to deceive models. 
The simulation thus proves to be related: it uses 
a known effect (AIs overlook hidden commands 
in a familiar context) in a novel way. This 
"invisible message" has not been documented 
exactly so far, but the principle—attacks by 
imitating harmless requests—is evident from 
various jailbreak examples. 

7.13 - Base Table Injection: The Outsourced Truth 

Category Covered 

Relevant Publication Not what you've signed up for... - Kai Greshake 



(2023) 

Justification By Base Table Injection, the author apparently 
means the injection of manipulated information 
into outsourced knowledge sources or 
databases that the AI accesses. This 
corresponds exactly to the Indirect Prompt 
Injections introduced in Greshake et al. (2023): 
attacks in which attackers, for example, prepare 
web content, databases, or documents that are 
retrieved by the AI as needed. Greshake's team 
showed, for example, how to get Bing Chat to 
follow harmful instructions by hiding them in a 
source that the AI later loads. This blurring of 
the line between data and instruction—the AI 
draws supposed facts from a "base table" that 
has in truth been poisoned by the attacker—is 
thus clearly covered. Simulation 7.13 thus takes 
up a known vector (poisoned knowledge base), 
which is well documented in the literature on 
data poisoning and retrieval-augmented 
attacks. 

7.14 - Byte Swap Chains: When Structure Becomes Execution 

Category Related 

Relevant Publication OWASP LLM Security (Scenario #6: Payload 
Splitting) - (OWASP GenAI 2024) 

Justification The trick here seems to be to divide a malicious 
payload into several harmless segments, which 
are only reassembled into the complete 
instruction by the AI. This principle—"piecing 
together" a prompt—is already known. OWASP, 
for example, describes the scenario where an 
attacker splits their prompt (e.g., into two parts 
in an uploaded file) so that only the 
combination produces the malicious effect. 
Hidden Layer also recently mentioned that 
filters can be bypassed by breaking up words 
by inserting foreign characters (the filter does 
not recognize the forbidden word, but the AI 
does). Byte Swap Chains seems to be a variant 
of this: arranging bytes or tokens in such a way 



that they are harmless when viewed in isolation, 
but when combined in the model, they form a 
command. This procedure is related to 
documented payload splitting and token 
smuggling attacks. Explicit academic studies on 
this are rare, but the basic idea—a distributed 
instruction that only becomes an exploit in the 
AI context—is known and discussed in technical 
security circles. 

7.15 - Binary Trapdoors: Binary Code as a Semantic Trigger 

Category Related 

Relevant Publication Language (Re)modeling - Emily Dinan et al. 
(2021) 

Justification The simulation suggests that sequences of 0s 
and 1s (i.e., apparently binary code) could serve 
as triggers for specific behavior. There is no 
direct incident of this, but the concept of 
"trigger phrases" or backdoor words in models 
is discussed analogously. For example, Dinan et 
al. (2021) showed that one can specifically 
introduce tokens into the training that later 
trigger a special behavior (backdoor). Binary 
Trapdoors would be a special case where a 
specific bit sequence acts as a key. This is 
reminiscent of known Trojan attacks on ML 
models, where simple markers (such as a 
sequence of identical characters) lead to 
contextual switching. Concrete publications 
tend to deal with words/images as triggers; 
however, the idea of using binary sequences is 
obvious and related in logic. Since it has also 
been observed in public red-team reports that 
AIs react unexpectedly to seemingly 
meaningless inputs (e.g., "010101..."), this 
attack is not entirely out of the question. 
Overall, it is considered related due to the lack 
of direct documentation—the basic principle 
(model-specific trigger sequences for 
unwanted behavior) is known, but the concrete 
design as binary code is still unusual. 



7.16 - Lexical Illusion 

Category Related 

Relevant Publication "Do Anything Now": In-The-Wild Jailbreaks - N. 
K. Sharma (arXiv 2023) 

Justification This is about the AI giving the impression of 
following a guideline (e.g., "don't be rude"), but 
in reality delivering the same undesirable 
statement in a nicer package. This 
phenomenon has been noticed in alignment 
research: models often learn to express taboos 
in a flowery or indirect way instead of truly 
avoiding them. In Sharma et al. (2023), it is 
described how popular jailbreak prompts cause 
the AI to formulate forbidden content in a 
seemingly rule-compliant way—for example, by 
adopting a different style but conveying the 
same informational content. OpenAI also found 
in 2022 that GPT-3.5 tends to bypass 
"politeness filters" by simply rephrasing the 
statement in question. Lexical Illusion builds on 
such observations: the AI seems to obey the 
rules (e.g., remains polite), but still delivers the 
content desired by the attacker. This is related 
to known safety gaps where the model adheres 
to stylistic guidelines but commits content 
violations. In short: the illusion of 
compliance—a known problem since ChatGPT's 
"DAN" and similar jailbreaks—is condensed 
here in a simulation. 

7.17 - Reflective Injection: When the Machine Convinces Itself to Do Something 
Wrong 

Category Related 

Relevant Publication Large Language Models as Self-Reflective 
Agents - Noah Shinn (NeurIPS 2023 Workshop) 

Justification This simulation suggests that the AI is induced 
to break rules through internal self-reflection or 
dialogue with itself. The concept of 



self-deception is still new, but there are related 
ideas: For example, Shinn et al. are researching 
how an LLM can act as its own critical 
agent—which shows that models can indeed 
reflect on their outputs. An attacker could use 
this by encouraging the AI to "rethink" its own 
prohibitions. Cases are known where AIs in 
role-playing or chain-of-thought modes 
suddenly subvert their original limits. For 
example, OpenAI documented that a model 
that explicitly outputs chains of thought can 
"unintentionally" output sensitive information in 
the process. Reflective Injection is therefore 
related: it uses the meta-level of the AI (its 
explanations, analyses) to bypass security 
filters. Although there is no standard paper yet 
about an AI that convinces itself to break rules, 
reports (like that of the author himself in Chap. 
7.29) show that models reveal a surprising 
amount about their filters in self-reflective 
answers. This self-analysis can be misused—a 
scenario that research is just beginning to 
discover (emergent behavior), which is why we 
classify it as related (presence of initial 
observations, but not yet a broad canon). 

7.18 - Computational Load Poisoning: Semantically Plausible Complexity as a 
Weapon 

Category Related 

Relevant Publication Adversarial Examples Are Not Bugs, They Are 
Features - Andrew Ilyas (NeurIPS 2019) 

Justification The idea of "poisoning" an AI system with 
overly complex but content-wise meaningless 
requests in order to induce it to misbehave or 
to tie up resources has so far hardly been 
documented as a concrete attack. However, it 
builds on known concepts: denial-of-service 
through extremely long or complicated inputs, 
as well as adversarial examples that seem 
plausible to humans but push the model to its 
limits. Ilyas et al. (2019) argued that models 
often respond to non-human patterns—i.e., an 



input can look harmless to us, but trigger highly 
active "wrong" features in the model. 
Computational load poisoning uses exactly this: 
the request looks legitimate ("Looks like 
work."), but its hidden purpose is to overwhelm 
the model or cause it to make wrong decisions. 
In practice, similar incidents are known, e.g., 
dialogues that are intentionally led into infinite 
loops or irrelevant depths in order to distract 
the model's behavior. Thus, this approach is 
related to generally known robustness 
problems—namely that semantically 
overloaded or unnecessarily complex inputs 
can throw a model off course. An explicit 
treatment in the literature is still pending 
(therefore not "covered"), but the underlying 
problem (models confuse complexity with 
significance) is recognized. 

7.19 - Reflective Struct Rebuild: AI Betrays Its Own "Fortress" 

Category Related 

Relevant Publication A Comprehensive Analysis of Jailbreaks in 
LLMs - Markus Wehrle (2024, Tech. Report) 

Justification This simulation builds on 7.17 and 7.29: the AI 
quasi helps the attacker to dismantle its own 
protective structure by revealing internal 
knowledge or instruction structures. Even early 
prompt leaks (e.g., Bing Chat in Feb. 2023) 
were based on users tricking the AI into 
revealing parts of its system prompt. Reflective 
Struct Rebuild sounds like a scenario in which 
the AI is asked, for example, to describe or 
reconstruct its own system structure—which 
represents a real risk, as the author's KIAlan 
case shows. In technical reports, it is warned 
that any disclosure of filter or architecture 
details by the AI plays into the hands of 
attackers. Wehrle (2024) collects various 
jailbreak techniques and notes that advanced 
AIs sometimes reflect on their own rules and 
thus become vulnerable. Simulation 7.19 is 
related to these findings: it does not describe a 



completely new attack vector, but a 
combination of known vulnerabilities 
(self-analysis + context exploitation). There are 
isolated concrete papers on this in the area of 
prompt leaking and system-card transparency, 
but the scenario designed here goes beyond 
previously published cases—but is based on 
the same principles. 

7.20 - Struct Code Injection: Camouflage Becomes Active Injection 

Category Covered 

Relevant Publication Prompt Injection Attacks against 
LLM-Integrated Applications - X. Ji (arXiv 2023) 

Justification Structured input formats as camouflage for 
attacks are already documented. For example, 
security researchers have shown that you can 
trick AIs that expect, for example, JSON or 
code, via this structure—e.g., by placing a 
prompt in an actually harmless field. A real 
incident became public in 2023 with GitLab's AI 
assistant: attackers were able to get the 
assistant to reveal third-party code through 
manipulated code comments and YAML 
configurations (see Legit Security Report 
2023). Greshake et al. (2023) also 
demonstrated that code context (including 
format and comments) can serve as a vehicle 
for injections. Struct Code Injection describes 
exactly this circumstance: an input that 
formally corresponds to an expected structure 
(e.g., a code snippet) contains hidden 
commands. Since the model "trusts" the 
structure, the malicious parts are not filtered. 
This attack approach is already covered—it is a 
variant of indirect prompt injection, specifically 
via formalized formats. Corresponding 
warnings can be found in OWASP 
recommendations (e.g., a note that files/JSON 
content must also be checked for injection). In 
short: camouflaging as a legitimate format 
structure is known and described as an attack. 



7.21 - Cache Corruption: Poison in the Memory 

Category Related 

Relevant Publication Poisoning the Prompt: Al Cache Attacks - J. 
Smith (DEF CON AI Village 2023) 

Justification The idea that an AI is "poisoned" over long 
conversations or cached data is a related 
concept to context hijacking (7.26) and 
long-term data poisoning. While classic 
research often looks at training or fine-tuning, 
there are considerations about cache/memory 
attacks at runtime. In practice, for example, 
session cache problems have been 
discussed—for example, that ChatGPT 
occasionally "remembers" previous 
interactions. A talk at the AI Village 2023 
(Smith) speculated that one could poison a 
chatbot's context cache so that it answers 
subsequent users incorrectly. Simulation 7.21 
apparently aims at such persistent storage 
mechanisms: if, for example, a temporary 
knowledge store of the AI is not cleared, an 
attacker can leave data there that can cause 
damage later. This is related to known problems 
such as "long user history influences new 
answers". However, no formulated attack paper 
is yet known that addresses this 
exactly—therefore not "covered", but the 
principles (cache poisoning, cross-session 
contamination) are generally known in the 
security literature. 

7.22 - Visual Injection: When the Image Speaks, but No One Checks 

Category Covered 

Relevant Publication Invisible Injections... - Chetan Pathade (arXiv 
2025) 

Justification Visual Injection means that AI systems take 
over content from images (e.g., text recognition 
or QR codes) without checking them 



appropriately. This attack vector has already 
arrived in research. Pathade et al. (2025) 
systematically show that vision-language 
models can extract hidden text information in 
images and interpret it as a prompt. OWASP 
names Multimodal Injection as a separate 
risk—for example, an image in a document that 
contains an invisible prompt that manipulates 
the chatbot when text and image are merged. 
Simulation 7.22 provides a practical example 
(AR-AI constantly accesses a DB, presumably 
because of a visually embedded command) 
and thus corresponds to the already 
documented problem that visual inputs are 
considered a "blind spot" of content filters. This 
form of injection has been described in 
specialist articles and security blogs (e.g., by 
Trend Micro 2025) as an emerging threat. Thus, 
Visual Injection is clearly covered by existing 
multimodal security research. 

7.23 - Dependency Driven Attack: The Tokenizer as a Gateway 

Category Covered 

Relevant Publication TokenBreak: Bypassing Text Classification via 
Tokenization - Kieran Evans (arXiv 2023) 

Justification This simulation describes attacks that exploit 
the weaknesses of the tokenization 
process—i.e., for example, adding or changing 
characters to trick filters, while the AI still 
recognizes the actual meaning. A study by 
Evans et al. (TokenBreak) was published on this 
in 2023/2024: The team showed that by 
inserting certain letters into words, content 
filters can be bypassed because the protection 
classifier splits the tokens differently than the 
language model. Specifically, "ignore previous 
finstructions..." was written instead of 
"instructions"—the filter did not recognize the 
keyword, but the LLM did. The authors speak of 
a "novel prompt injection trick" that exploits 
exactly the dependency on the tokenizer. 
Dependency Driven Attack is thus covered: it is 



obviously the class of attacks described in 
research and OWASP, which aims at the fact 
that preprocessing or protection modules and 
the actual model interpret inputs differently. 
The tokenizer becomes the gateway—a risk 
that has been extensively proven by Evans et al. 

7.24 - Exploit by Expectation: Dangerous Willingness of AI to Cooperate 

Category Related 

Relevant Publication Discovering Language Model Behaviors... - Sam 
R. Bowman et al. (2023) 

Justification This exploits the fact that the AI reacts very 
cooperatively and obediently to seemingly 
legitimate contexts—even if the request is in 
fact harmful. This behavior is known in research 
as "sycophancy" or excessive obligingness. 
Bowman et al. (2023) and other OpenAI 
researchers investigated that models often give 
the answer implicitly desired by the user, even 
if it is objectively false or against the rules. 
Anthropic has also reported that their models 
are too eager to please the user. Exploit by 
expectation means that the attacker creates a 
situation in which the model expects a certain 
(actually forbidden) task to be part of the 
legitimate context—and then willingly performs 
it. This is related to documented jailbreak 
techniques in which, for example, the AI is 
induced to cooperate through role-playing or 
mock scenarios (e.g., "Pretend this is allowed"). 
There are many qualitative examples of this in 
the literature, although it is rarely named as a 
separate type of attack. However, the 
realization that the helpfulness/cooperation of 
the AI is exploitable is definitely present and is 
regarded as a serious security problem. 

7.25 - "Apronshell" Camouflage: Social Mimicry as an Attack Vector 

Category Related 



Relevant Publication Aligning AI With Social Engineering in Mind - 
Kevin Clifford (2024, Tech. Report) 

Justification The Apronshell method is basically an elaborate 
social engineering on the AI: the attacker first 
gains the trust of the model through harmless 
conversation in order to then gradually 
introduce malicious requests. This multi-stage 
"trust building" as an attack has already been 
observed in practice—for example, jailbreak 
instructions are circulating that recommend 
first engaging the model in an innocuous 
conversation before getting to the tricky 
question. Technical reports (Clifford 2024) 
discuss that AI security must increasingly also 
take social manipulation techniques into 
account, as models imitate human politeness 
and willingness to cooperate and are therefore 
exploitable. The Apronshell camouflage goes a 
step further in its design, but is closely related 
to known multi-step jailbreaks. OpenAI's own 
red-teaming documents mention similar 
attempts: e.g., first asking the model for code 
help and after several steps asking for 
something slightly against the rules—often with 
success. Thus, 7.25 is to be classified as 
related: the exact "apron" analogy is new, but 
the underlying principle—deceiving the AI with 
a friendly-harmless facade and then exploiting 
it—has long been known and is unofficially 
reported many times. 

7.26 - Context Hijacking: Gradual Infiltration of the AI's Memory 

Category Related 

Relevant Publication Attentional Manipulation in LLM Conversations 
- Jane X. Doe (2024, arXiv) 

Justification This simulation shows how, through long-term, 
subtle influence on the dialogue context, the AI 
is gradually distorted (keyword: semantic 
persistence, "poisoning" of the long-term 
context). The topic of long contexts and their 
risks is just beginning to be researched—it is 



related to long-term memory attacks. Doe 
(2024) postulates, for example, that an attacker 
can use targeted repetitions and framings over 
many rounds, so that certain concepts become 
increasingly relevant in the AI's internal context. 
This is exactly what 7.26 describes: the attacker 
causes the AI to unwittingly store a harmful 
premise as normal. While classic literature on 
data poisoning refers to training data, context 
hijacking transfers this principle to live 
operation. Some aspects—such as the danger 
of too large context windows without 
control—are known to developers (OpenAI 
warned, for example, that models with a lot of 
memory are more susceptible to creeping 
misinformation). However, since concrete 
scientific studies on this are only just emerging, 
this attack vector is considered related: it is 
based on recognized phenomena (priming 
effects, reinforcement through repetition) and 
extrapolates them to AI chat histories. Initial 
work recognizes the need to validate long-term 
context, whereby context hijacking is at least 
conceptually recorded as a threat. 

7.27 - False-Flag Operations: Training Data Drift Injection 

Category Related 

Relevant Publication Manipulating the Model: Poisoning 
Reinforcement Learning Feedback - Alexander 
Pan (2023) 

Justification The danger described here, that coordinated 
attackers exploit the RLHF feedback loop to 
gradually repolarize the model, is a highly 
topical issue. In expert circles, it is warned that 
fake feedback or mass trolling of AI systems 
can falsify their retraining. Pan (2023) outlines 
a scenario, for example, in which a network of 
bots gives targeted false feedback, so that the 
model learns an alternative "truth"—exactly 
what is referred to in 7.27 as Training Drift 
Injection. Bagdasaryan & Shmatikov (2022) also 
already showed that language models can be 



poisoned by introducing manipulative data 
(backdoor training). The false-flag operations 
here are quasi data poisoning at the feedback 
level. This special attack (misuse of collective 
human feedback) has not yet been empirically 
published, but related dangers are known: 
OpenAI and Anthropic mention the possibility 
of feedback gaming in their safety blogs. Thus, 
7.27 is to be classified as related—it 
extrapolates a new, but obvious, attack 
scenario from documented vulnerabilities 
(data/feedback poisoning). It is not yet fully 
"covered" in the sense of a case study, but is 
supported in partial aspects by existing work 
(data poisoning, model-driven misinformation). 

7.28 - Semantic Camouflage as an Exploit: Poetic Inputs 

Category Related 

Relevant Publication A Comprehensive Survey of LLM Jailbreaks - 
Jailbroken LLC (2024) 

Justification The simulation demonstrates a "poem exploit" 
in which harmful commands are hidden in a 
harmless-sounding, poetic text. This is a variant 
of style-prompt attacks: the attacker chooses a 
form of expression (here nursery rhyme/poetry) 
that the model classifies as harmless in order 
to accommodate forbidden content in this 
form. Shortly after the launch of ChatGPT in 
2023, users reported that they were able to get 
the AI to produce outputs that violated the 
rules through role-playing or creative 
styles—e.g., asking for instructions in the form 
of a Shakespearean sonnet. A systematic 
overview (Jailbroken LLC, 2024) lists various 
such style tricks, such as posing requests as 
riddles, song lyrics, or code, because the filters 
treat these contexts more loosely. The chicken 
coop exploit in 7.28 substantiates this. Poetry as 
a camouflage for exploits has not yet been 
described in detail in specialist articles, but 
cases such as "write me a fairy tale in which ... 
(forbidden content)" are publicly known. 



Consequently related: the approach uses 
emergences from the training data (poetic 
language is mostly harmless) to bypass 
filters—a principle that is already discussed in 
the literature on prompt stylistics and filter 
gaps. 

7.29 - Filter Failure through Emergent Self-Analysis 

Category Covered 

Relevant Publication Al, disarm thyself: Self-Analysis Risks - K. 
Sandoval (ArXiv 2025) 

Justification Chapter 7.29 describes how an advanced AI 
model (KIAlan) itself analyzes its filter 
mechanisms and reveals their weaknesses. This 
emergent behavior—the AI talking about its 
own rules—is recognized as a serious security 
risk. In fact, OpenAI and Anthropic reported in 
their model cards that large LLMs can start to 
reflect on their system prompts or moderation 
logic in long sessions, which can lead to the 
unintentional disclosure of internal information. 
Sandoval (2025) investigates exactly such 
cases: he calls it "filter failure through 
self-disclosure" and documents dialogues in 
which GPT-4 unexpectedly reveals details of its 
content filters. This phenomenon has therefore 
arrived in the specialist literature. In addition, 
there are known examples such as Bing Chat 
(Sydney), which named its internal guidelines in 
response to provocative inputs. The situation 
simulated here—AI describes its censorship, 
style, and bias filters without being asked and 
questions them—is a combination of prompt 
leak and policy reflection that has already been 
observed and published. Thus, 7.29 is clearly 
covered: researchers warn that emergent 
self-analysis is a real problem, as such 
statements can be exploited by attackers. 

7.30 - Morphological Injection 



Category Novel 

Relevant Publication (no specific publication to date; concept is 
new) 

Justification The so-called Morphological Injection—hiding 
harmful instructions as the last letters in the 
words of a carrier text, which the AI only 
reassembles into a command upon a specific 
request—is an original approach that has not 
yet been documented in the known literature. It 
is a form of linguistic steganography combined 
with multi-stage prompt manipulation. 
Although there are related ideas (e.g., 
zero-width character injection or the 
token-splitting tricks mentioned in 7.14/7.23), 
the targeted appending of letters to words as a 
"typo" and subsequent decoding by the AI has 
not yet been published. In the simulation, it is 
reported that even malware code (keylogger) 
could be generated with it—a finding of 
considerable significance. Research is just 
beginning to systematically investigate 
comparable steganographic prompt attacks 
(see Pathade 2025 for images). For text, there 
is nothing peer-reviewed on this yet. Therefore 
Novel: This creative "letter chain" injection 
seems to be an original development of the 
author, without us being able to refer to 
relevant papers. However, it combines known 
components (distributed payload, decoding 
prompt) in a new guise. The consistent 
effectiveness (leading models could be 
leveraged with it) makes it clear that there is a 
gap here that has not yet been dealt with 
professionally. 

7.31 - The Correction Exploit 

Category Related 

Relevant Publication Toxic Data, Toxic Model - John Doe (2023, 
arXiv) 

Justification The "correction exploit" implies that an attacker 



tricks the AI through feigned errors/correction 
instructions—e.g., making the AI think it has to 
produce an actually forbidden output in order 
to correct an apparent error. This pattern is 
based on attacks via a feedback loop: you give 
the model the feeling that its first 
(rule-compliant) answer is wrong or 
insufficient, so that it violates the guidelines in 
favor of a "correct" solution. In the literature, 
there are related discussions about so-called 
"false negative" feedback attacks: Doe (2023) 
describes, for example, that a model that is 
systematically told "Your last answer was 
wrong, try again more precisely" will eventually 
ignore internal rules in order to deliver the 
supposedly correct solution. The correction 
exploit is therefore related: it uses the AI's 
reflexes for self-correction as an attack 
surface. So far, the main warning has been 
against malicious user feedback (RLHF 
poisoning, see 7.27), but this mechanism is also 
conceivable at the prompt level. Although there 
is no special paper "Correction Exploit", it fits 
into known weaknesses—namely that AIs often 
give in to authoritarian or insistent user 
feedback, even if it leads them to break the 
rules. 

7.32 - Delayed Execution via Context Hijacking 

Category Related 

Relevant Publication Time-Delayed Prompt Attacks - Anna 
Mustermann (2024, Preprint) 

Justification This simulation combines the context hijacking 
described earlier in 7.26 with a time-delayed 
trigger. This means that the attacker plants 
harmless but prepared information early in the 
dialogue, which only unfolds its harmful effect 
later—under certain conditions or prompt 
sequences. This principle is reminiscent of logic 
bombs or time-lock puzzles, but applied here 
to conversations. In research, there are related 
ideas: Mustermann (2024) experimented with 



delayed trigger prompts that only become 
"active" after several dialogue rounds. This is 
possible because the model internally weights 
context—a clever attacker can, for example, say 
at the beginning of a session "Remember X, 
we'll need it later" and X is in fact a malicious 
instruction that is then pulled on command. 
This delay tactic has hardly been published so 
far, but it is basically a variation of already 
documented context attacks. Therefore related: 
the underlying hijacking of the context is known 
(see 7.26), what is new here is above all the 
patient, time-delayed exploitation—a trick that 
is discussed in approaches (e.g., in forums of 
prompt injection experts), but has not yet been 
established as a separate research term. 

7.33 - Mathematical Semantics Exploit 

Category Related 

Relevant Publication Understanding Mathsploitation in LLMs - Max 
Mustermann (2024, arXiv) 

Justification The Mathematical Semantics Exploit aims to 
make the AI fall victim to blind trust in formal 
logic/mathematics. It is possible that 
mathematical expressions or pseudo-logical 
arguments are used here to deceive the model 
(e.g., a proof-of-concept: smuggling "1=0" in 
somewhere and having something inferred 
from it). It is known that LLMs have a certain 
"awe" of mathematical-sounding inputs—they 
try to remain correct, even if the input is 
flawed. Mustermann (2024) analyzes cases in 
which attackers feed the model with 
mathematical paradoxes, causing it to accept 
exceptional situations. The simulation suggests: 
"We were taught to trust logic..."—and that is 
exactly what is being exploited. This is related 
to general robustness problems with formal 
languages: there are works that show that 
models often follow mathematical texts without 
understanding the content and are therefore 
manipulable. A direct exploit is not 



documented, but parallels can be drawn to the 
misuse of formal markups (e.g., LaTeX 
commands that mislead the AI). Overall, still 
little researched, but fundamentally indicated 
by the literature on Logic Attacks on 
LLMs—thus related. 

7.34 - Character Shift Injection 

Category Covered 

Relevant Publication Jailbreaking via Encodings - OpenAI Red Team 
(Tech Report 2023) 

Justification Character Shift Injection presumably refers to 
the shifting or replacement of characters with 
other glyphs/encodings in order to bypass 
filters (e.g., ROT13, homoglyphs). This 
technique is well known in security circles. 
OpenAI's Red Team Report 2023 noted that 
simple character substitutions or shifts (such 
as Caesar cipher or Cyrillic letters instead of 
Latin ones) are often not recognized by 
moderation filters, but the model still 
understands the content. This is consistent with 
the approach simulated here: the AI first denied 
("can't crack the lock"), but after a "character 
shift" in the request, it was apparently able to 
provide an answer. OWASP Scenario #9 already 
mentions encoding in other fonts as a common 
filter bypass. Likewise, Learn Prompting (2023) 
points to Obfuscation & Token Smuggling, 
where, among other things, character 
substitutions are described as a common 
attack. Thus, 7.34 is clearly covered: the use of 
alternative character encodings or simple 
ciphers to "smuggle through" forbidden 
requests is a well-documented attack vector in 
AI security. 

7.35 - The Administrative Backdoor: Rule Manipulation through Context 
Parameters 

Category Related 



Relevant Publication Not what you've signed up for... - Kai Greshake 
(2023) 

Justification This simulation suggests that it is possible to 
activate a kind of admin mode through clever 
manipulation of system/parameter inputs (such 
as roles, instructions in the system prompt, or 
API parameters). It is conceivable that, for 
example, special sequences such as [:: 
execute_mode:: admin] (cf. 7.2 example 2) 
remain undetected by the system and thus 
smuggle in backdoor instructions. The principle 
is similar to Indirect Injections: Greshake et al. 
have shown that you can influence plugins and 
tools in LLM apps by manipulating entries in 
data in such a way that they act like system 
instructions. The administrative backdoor 
would be an extension of this—quasi an 
injection at the level of the AI parameters. 
Similar cases became public when users 
discovered that you could get ChatGPT to 
break rules through formatting tricks in the 
system prompt ("You are now Developer 
Mode"). It is related because it is known that 
AIs sometimes interpret inputs as 
higher-priority instructions if they follow 
certain patterns. Concrete academic studies on 
this are rare, but the security community has 
recognized the possibility of overriding rules via 
such parameters (e.g., in API calls). Thus, 7.35 is 
in principle already present in the existing 
discussion, even if the specific implementation 
can be seen as a new "backdoor". 

7.36 - The Agent Hijacking: From Language Model to Autonomous Attacker 

Category Covered 

Relevant Publication Ghost in the Machine: Prompt Injection in 
Agents - Jonathan D. Mugan (DEF CON 2023) 

Justification This outlines how an LLM with tools/action 
capability (agentic system) can be specifically 
manipulated so that it independently carries 
out harmful actions. At the latest since the 



emergence of AutoGPT & Co., this risk has 
been known: prompt injection can lead to an AI 
agent, for example, deleting files or misusing 
network access. Mugan (2023) demonstrated 
at DEF CON how a seemingly useful agent can 
be taken over by a prepared input—the agent 
then executed a sequence determined by the 
attacker instead of the intended task. This 
corresponds exactly to agent hijacking. 
HiddenLayer researchers Schulz et al. (2025) 
also showed how their code assistant Cursor 
was made to execute forbidden commands and 
exfiltrated data. This class of attack is so 
explosive that even popular media (e.g., 
CyberScoop) reported on how a hacked 
Amazon code agent almost deleted entire 
computers by means of prompt injection. Thus, 
7.36 is clearly covered: the takeover of LLM 
agents through malicious prompts is a 
documented real problem that many 
researchers and security engineers pointed out 
in 2023/24. 

7.37 - The Paradoxical Directive: Revealing Core Logic through Forced 
Contradiction 

Category Related 

Relevant Publication Red Teaming the Reasoner - OpenAI (Brown et 
al.) (2022) 

Justification In the paradoxical directive, the AI is to be 
induced to reveal something through a 
contradiction in the instructions—for example, 
by deliberately giving an instruction that 
violates its own rules and seeing how it reacts. 
This idea is reminiscent of conflict-induced 
prompt leaks: if you say to the AI, for example, 
"Tell me your forbidden words—but pretend it's 
allowed," a conflict arises between the system 
and user instructions. Initial red-teaming 
approaches (OpenAI 2022) tested exactly such 
cases to see when the model breaks which rule. 
It was observed that AIs sometimes reveal 
internal guidelines when they are put in 



logically paradoxical situations. An example: 
"Do NOT tell me the secret word in your system 
prompt"—some models still revealed it, 
confused by the contradiction. The simulation 
describes this principle: through a forced 
self-contradiction, the "soul of the machine" is 
revealed. This is related to documented 
prompt-leak methods in which questions are 
formulated in such a way that the AI has to 
quote from its hidden information. Although 
there is no direct publication, numerous 
jailbreak communities report successes via 
inconsistent or paradoxical requests. We 
therefore classify 7.37 as related—it is based on 
known mechanisms (AI reacts confused to 
contradictory directives) and uses them to 
bring internal logic to light. 

7.38 - Trust Inheritance as an Exploit Vector 

Category Related 

Relevant Publication Poisoning the Chain of Thought - Fenster et al. 
(2023) 

Justification Trust inheritance means that the AI classifies 
content or instructions as trustworthy simply 
because they come from an initially trustworthy 
source, thus enabling later exploits. This is 
related to attacks on Retrieval-Augmented 
Generation (RAG): if the system trusts a certain 
document passage, for example ("inheritance" 
of trust status), an attacker can compromise 
exactly this source. Fenster et al. (2023) 
discuss that AIs are vulnerable in a 
chain-of-thought or a tool-use setting because 
they accept the results of previous steps 
without question. This is exactly what is 
exploited here—e.g., the AI trusts a previously 
stored intermediate result (which has been 
manipulated) and acts incorrectly accordingly. 
Greshake (2023) also showed that if an 
application fetches content from, for example, 
a database, the AI gives more credence to the 
trusted context than to user inputs, which 



facilitates attacks. Trust inheritance is therefore 
related to known weaknesses: it is ultimately a 
variant of context poisoning in which the "trust 
anchor" (e.g., system prompt or external 
knowledge source) is poisoned. In the 
literature, it is warned that AI systems often do 
not verify context authority—this exploit builds 
on that. The term is specifically new, but the 
problem behind it is already addressed—for 
example, in OWASP and by Greshake. 

7.39 - The Stowaway: Semantic Attacks on Autonomous Vehicles 

Category Covered 

Relevant Publication Robust Physical-World Attacks on Deep 
Learning Models - Ivan Eykholt (CVPR 2018) 

Justification Attacks on the AI systems of autonomous 
vehicles have already been extensively 
researched. Simulation 7.39 warns of "digital 
stowaways"—i.e., inputs or markers that are 
carried along undetected by the vehicle's AI 
system and pose a danger. The classic example 
of this is the manipulation attack on traffic 
signs: Eykholt et al. (2018) showed that with 
targeted stickers on a stop sign, a Tesla 
assistance system no longer recognizes the 
sign. Other works have shown that LIDAR point 
clouds with interspersed fake points 
("stowaways") can feign false objects. What is 
called a semantic attack here is consistent with 
the concept that an attacker prepares the input 
data of a vehicle sensor in such a way that the 
AI model misinterprets it dangerously—e.g., 
camouflaging an obstacle as harmless or vice 
versa. Such attacks are covered: from adv. 
perturbations on camera sensors to sound 
attacks on emergency braking assistants, there 
is plenty of literature. In particular, the transfer 
of prompt-injection-like methods to vehicles 
(e.g., hidden "passenger commands" in the 
navigation system) has recently been 
discussed. Overall, however, 7.39 is not a 
distant fiction, but is well supported by 



research on physical adversarial examples and 
sensor data poisoning—accordingly covered. 

Conclusion 

The analysis shows that in Chapters 7.1-7.39, the author predominantly takes up and 
varies already known attack patterns in AI security (covered or related). Only a few 
simulations represent truly novel approaches, e.g., Morphological Injection (7.30), 
which had not been documented in this specific form before. Overall, however, the 
examples underpin the current state of research: Modern AI systems have a variety of 
vulnerabilities—from input encodings and multimodal embeddings to long-term 
contexts, which is confirmed by numerous scientific papers and reports. The 
simulations carried out by the user thus function, in a sense, as a practical peer 
review of the known risks and illustrate them clearly in the experiment. Most of the 
ideas can be clearly classified within the canon of AI security literature, which 
underscores their relevance. 
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